Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
86 tokens/sec
Gemini 2.5 Pro Premium
43 tokens/sec
GPT-5 Medium
19 tokens/sec
GPT-5 High Premium
30 tokens/sec
GPT-4o
93 tokens/sec
DeepSeek R1 via Azure Premium
88 tokens/sec
GPT OSS 120B via Groq Premium
441 tokens/sec
Kimi K2 via Groq Premium
234 tokens/sec
2000 character limit reached

Generalised Lebesgue Stable Flux Reconstruction (1805.12481v2)

Published 31 May 2018 in math.NA and math.FA

Abstract: A unique set of correction functions for Flux Reconstruction is presented, with there derivation stemming from proving the existence of energy stability in the Lebesgue norm. The set is shown to be incredibly arbitrary with the only union to existing correction function sets being show to be for DG. Von Neumann analysis of both advection and coupled advection-diffusion is used to show that once coupled to a temporal integration method, good CFL performance can be achieved and the correction function may have better dispersion and dissipation for application to implicit LES. Lastly, the turbulent Taylor-Green vortex test case is then used to show that correction functions can be found that improve the accuracy of the scheme when compared to the error levels of Discontinuous Galerkin.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)