Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sobolev Descent (1805.12062v2)

Published 30 May 2018 in cs.LG and stat.ML

Abstract: We study a simplification of GAN training: the problem of transporting particles from a source to a target distribution. Starting from the Sobolev GAN critic, part of the gradient regularized GAN family, we show a strong relation with Optimal Transport (OT). Specifically with the less popular dynamic formulation of OT that finds a path of distributions from source to target minimizing a ``kinetic energy''. We introduce Sobolev descent that constructs similar paths by following gradient flows of a critic function in a kernel space or parametrized by a neural network. In the kernel version, we show convergence to the target distribution in the MMD sense. We show in theory and experiments that regularization has an important role in favoring smooth transitions between distributions, avoiding large gradients from the critic. This analysis in a simplified particle setting provides insight in paths to equilibrium in GANs.

Citations (1)

Summary

We haven't generated a summary for this paper yet.