Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Differential Properties of Sinkhorn Approximation for Learning with Wasserstein Distance (1805.11897v1)

Published 30 May 2018 in stat.ML and cs.LG

Abstract: Applications of optimal transport have recently gained remarkable attention thanks to the computational advantages of entropic regularization. However, in most situations the Sinkhorn approximation of the Wasserstein distance is replaced by a regularized version that is less accurate but easy to differentiate. In this work we characterize the differential properties of the original Sinkhorn distance, proving that it enjoys the same smoothness as its regularized version and we explicitly provide an efficient algorithm to compute its gradient. We show that this result benefits both theory and applications: on one hand, high order smoothness confers statistical guarantees to learning with Wasserstein approximations. On the other hand, the gradient formula allows us to efficiently solve learning and optimization problems in practice. Promising preliminary experiments complement our analysis.

Citations (118)

Summary

We haven't generated a summary for this paper yet.