Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Like a Baby: Visually Situated Neural Language Acquisition (1805.11546v2)

Published 29 May 2018 in cs.CL and cs.AI

Abstract: We examine the benefits of visual context in training neural LLMs to perform next-word prediction. A multi-modal neural architecture is introduced that outperform its equivalent trained on language alone with a 2\% decrease in perplexity, even when no visual context is available at test. Fine-tuning the embeddings of a pre-trained state-of-the-art bidirectional LLM (BERT) in the LLMing framework yields a 3.5\% improvement. The advantage for training with visual context when testing without is robust across different languages (English, German and Spanish) and different models (GRU, LSTM, $\Delta$-RNN, as well as those that use BERT embeddings). Thus, LLMs perform better when they learn like a baby, i.e, in a multi-modal environment. This finding is compatible with the theory of situated cognition: language is inseparable from its physical context.

Citations (4)

Summary

We haven't generated a summary for this paper yet.