Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Generative Models for Distribution-Preserving Lossy Compression (1805.11057v2)

Published 28 May 2018 in cs.LG and stat.ML

Abstract: We propose and study the problem of distribution-preserving lossy compression. Motivated by recent advances in extreme image compression which allow to maintain artifact-free reconstructions even at very low bitrates, we propose to optimize the rate-distortion tradeoff under the constraint that the reconstructed samples follow the distribution of the training data. The resulting compression system recovers both ends of the spectrum: On one hand, at zero bitrate it learns a generative model of the data, and at high enough bitrates it achieves perfect reconstruction. Furthermore, for intermediate bitrates it smoothly interpolates between learning a generative model of the training data and perfectly reconstructing the training samples. We study several methods to approximately solve the proposed optimization problem, including a novel combination of Wasserstein GAN and Wasserstein Autoencoder, and present an extensive theoretical and empirical characterization of the proposed compression systems.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Michael Tschannen (49 papers)
  2. Eirikur Agustsson (27 papers)
  3. Mario Lucic (42 papers)
Citations (119)