Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fusion of Methods Based on Minutiae, Ridges and Pores for Robust Fingerprint Recognition (1805.10949v1)

Published 28 May 2018 in cs.CV

Abstract: The use of physical and behavioral characteristics for human identification is known as biometrics. Among the many biometrics traits available, the fingerprint is the most widely used. The fingerprint identification is based on the impression patterns, as the pattern of ridges and minutiae, characteristics of first and second levels respectively. The current identification systems use these two levels of fingerprint features due to the low cost of the sensors. However, due the recent advances in sensor technology, it is possible to use third level features present within the ridges, such as the perspiration pores. Recent studies have shown that the use of third-level features can increase security and fraud protection in biometric systems, since they are difficult to reproduce. In addition, recent researches have also focused on multibiometrics recognition due to its many advantages. The goal of this work was to apply fusion techniques for fingerprint recognition in order to combine minutiae, ridges and pore-based methods and, thus, provide more robust biometrics recognition systems. We evaluated isotropic-based and adaptive-based automatic pore extraction methods and the fusion of pore-based method with the identification methods based on minutiae and ridges. The experiments were performed on the public database PolyU HRF and showed a reduction of approximately 16% in the Equal Error Rate compared to the best results obtained by the methods individually.

Summary

We haven't generated a summary for this paper yet.