Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Intrinsic Image Transformation via Scale Space Decomposition (1805.10253v1)

Published 25 May 2018 in cs.CV

Abstract: We introduce a new network structure for decomposing an image into its intrinsic albedo and shading. We treat this as an image-to-image transformation problem and explore the scale space of the input and output. By expanding the output images (albedo and shading) into their Laplacian pyramid components, we develop a multi-channel network structure that learns the image-to-image transformation function in successive frequency bands in parallel, within each channel is a fully convolutional neural network with skip connections. This network structure is general and extensible, and has demonstrated excellent performance on the intrinsic image decomposition problem. We evaluate the network on two benchmark datasets: the MPI-Sintel dataset and the MIT Intrinsic Images dataset. Both quantitative and qualitative results show our model delivers a clear progression over state-of-the-art.

Citations (39)

Summary

We haven't generated a summary for this paper yet.