Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

COREclust: a new package for a robust and scalable analysis of complex data (1805.10211v1)

Published 25 May 2018 in cs.MS, stat.CO, and stat.ML

Abstract: In this paper, we present a new R package COREclust dedicated to the detection of representative variables in high dimensional spaces with a potentially limited number of observations. Variable sets detection is based on an original graph clustering strategy denoted CORE-clustering algorithm that detects CORE-clusters, i.e. variable sets having a user defined size range and in which each variable is very similar to at least another variable. Representative variables are then robustely estimate as the CORE-cluster centers. This strategy is entirely coded in C++ and wrapped by R using the Rcpp package. A particular effort has been dedicated to keep its algorithmic cost reasonable so that it can be used on large datasets. After motivating our work, we will explain the CORE-clustering algorithm as well as a greedy extension of this algorithm. We will then present how to use it and results obtained on synthetic and real data.

Summary

We haven't generated a summary for this paper yet.