Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tropical curves, graph complexes, and top weight cohomology of M_g (1805.10186v2)

Published 25 May 2018 in math.AG, math.AT, and math.GT

Abstract: We study the topology of a space parametrizing stable tropical curves of genus g with volume 1, showing that its reduced rational homology is canonically identified with both the top weight cohomology of M_g and also with the genus g part of the homology of Kontsevich's graph complex. Using a theorem of Willwacher relating this graph complex to the Grothendieck-Teichmueller Lie algebra, we deduce that H{4g-6}(M_g;Q) is nonzero for g=3, g=5, and g at least 7. This disproves a recent conjecture of Church, Farb, and Putman as well as an older, more general conjecture of Kontsevich. We also give an independent proof of another theorem of Willwacher, that homology of the graph complex vanishes in negative degrees.

Summary

We haven't generated a summary for this paper yet.