Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multivariate Convolutional Sparse Coding for Electromagnetic Brain Signals (1805.09654v2)

Published 24 May 2018 in eess.SP, cs.LG, and stat.ML

Abstract: Frequency-specific patterns of neural activity are traditionally interpreted as sustained rhythmic oscillations, and related to cognitive mechanisms such as attention, high level visual processing or motor control. While alpha waves (8-12 Hz) are known to closely resemble short sinusoids, and thus are revealed by Fourier analysis or wavelet transforms, there is an evolving debate that electromagnetic neural signals are composed of more complex waveforms that cannot be analyzed by linear filters and traditional signal representations. In this paper, we propose to learn dedicated representations of such recordings using a multivariate convolutional sparse coding (CSC) algorithm. Applied to electroencephalography (EEG) or magnetoencephalography (MEG) data, this method is able to learn not only prototypical temporal waveforms, but also associated spatial patterns so their origin can be localized in the brain. Our algorithm is based on alternated minimization and a greedy coordinate descent solver that leads to state-of-the-art running time on long time series. To demonstrate the implications of this method, we apply it to MEG data and show that it is able to recover biological artifacts. More remarkably, our approach also reveals the presence of non-sinusoidal mu-shaped patterns, along with their topographic maps related to the somatosensory cortex.

Citations (39)

Summary

We haven't generated a summary for this paper yet.