Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Intelligent Trainer for Model-Based Reinforcement Learning (1805.09496v6)

Published 24 May 2018 in cs.LG, cs.AI, and stat.ML

Abstract: Model-based reinforcement learning (MBRL) has been proposed as a promising alternative solution to tackle the high sampling cost challenge in the canonical reinforcement learning (RL), by leveraging a learned model to generate synthesized data for policy training purpose. The MBRL framework, nevertheless, is inherently limited by the convoluted process of jointly learning control policy and configuring hyper-parameters (e.g., global/local models, real and synthesized data, etc). The training process could be tedious and prohibitively costly. In this research, we propose an "reinforcement on reinforcement" (RoR) architecture to decompose the convoluted tasks into two layers of reinforcement learning. The inner layer is the canonical model-based RL training process environment (TPE), which learns the control policy for the underlying system and exposes interfaces to access states, actions and rewards. The outer layer presents an RL agent, called as AI trainer, to learn an optimal hyper-parameter configuration for the inner TPE. This decomposition approach provides a desirable flexibility to implement different trainer designs, called as "train the trainer". In our research, we propose and optimize two alternative trainer designs: 1) a uni-head trainer and 2) a multi-head trainer. Our proposed RoR framework is evaluated for five tasks in the OpenAI gym (i.e., Pendulum, Mountain Car, Reacher, Half Cheetah and Swimmer). Compared to three other baseline algorithms, our proposed Train-the-Trainer algorithm has a competitive performance in auto-tuning capability, with upto 56% expected sampling cost saving without knowing the best parameter setting in advance. The proposed trainer framework can be easily extended to other cases in which the hyper-parameter tuning is costly.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Yuanlong Li (6 papers)
  2. Linsen Dong (4 papers)
  3. Xin Zhou (319 papers)
  4. Yonggang Wen (84 papers)
  5. Kyle Guan (8 papers)

Summary

We haven't generated a summary for this paper yet.