Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
123 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

A Two-Stage Subspace Trust Region Approach for Deep Neural Network Training (1805.09430v1)

Published 23 May 2018 in cs.CV

Abstract: In this paper, we develop a novel second-order method for training feed-forward neural nets. At each iteration, we construct a quadratic approximation to the cost function in a low-dimensional subspace. We minimize this approximation inside a trust region through a two-stage procedure: first inside the embedded positive curvature subspace, followed by a gradient descent step. This approach leads to a fast objective function decay, prevents convergence to saddle points, and alleviates the need for manually tuning parameters. We show the good performance of the proposed algorithm on benchmark datasets.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.