Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Stochastic Gradient Langevin Dynamics: Taming Convergence and Saddle Point Escape Time (1805.09416v1)

Published 23 May 2018 in cs.LG, cs.AI, and stat.ML

Abstract: In this paper, we propose a new adaptive stochastic gradient Langevin dynamics (ASGLD) algorithmic framework and its two specialized versions, namely adaptive stochastic gradient (ASG) and adaptive gradient Langevin dynamics(AGLD), for non-convex optimization problems. All proposed algorithms can escape from saddle points with at most $O(\log d)$ iterations, which is nearly dimension-free. Further, we show that ASGLD and ASG converge to a local minimum with at most $O(\log d/\epsilon4)$ iterations. Also, ASGLD with full gradients or ASGLD with a slowly linearly increasing batch size converge to a local minimum with iterations bounded by $O(\log d/\epsilon2)$, which outperforms existing first-order methods.

Citations (1)

Summary

We haven't generated a summary for this paper yet.