Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Depth versus Breadth in Convolutional Polar Codes (1805.09306v1)

Published 23 May 2018 in cs.IT and math.IT

Abstract: Polar codes were introduced in 2009 by Arikan as the first efficient encoding and decoding scheme that is capacity achieving for symmetric binary-input memoryless channels. Recently, this code family was extended by replacing the block-structured polarization step of polar codes by a convolutional structure. This article presents a numerical exploration of this so-called convolutional polar codes family to find efficient generalizations of polar codes, both in terms of decoding speed and decoding error probability. The main conclusion drawn from our study is that increasing the convolution depth is more efficient than increasing the polarization kernel's breadth as previously explored.

Citations (2)

Summary

We haven't generated a summary for this paper yet.