Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the rationality of algebraic monodromy groups of compatible systems (1805.08383v3)

Published 22 May 2018 in math.NT, math.AG, math.GR, and math.RT

Abstract: Let $E$ be a number field and $X$ a smooth geometrically connected variety defined over a characteristic $p$ finite field. Given an $n$-dimensional pure $E$-compatible system of semisimple $\lambda$-adic representations of the \'etale fundamental group of $X$ with connected algebraic monodromy groups $G_\lambda$, we construct a common $E$-form $G$ of all the groups $G_\lambda$ and in the absolutely irreducible case, a common $E$-form $G\hookrightarrow\text{GL}{n,E}$ of all the tautological representations $G\lambda\hookrightarrow\text{GL}{n,E\lambda}$ (Theorem 1.1). Analogous rationality results in characteristic $p$ assuming the existence of crystalline companions in $\text{F-Isoc}{\dagger}(X)\otimes E_{v}$ for all $v|p$ (Theorem 1.5) and in characteristic zero assuming ordinariness (Theorem 1.6) are also obtained. Applications include a construction of $G$-compatible system from some $\text{GL}_n$-compatible system and some results predicted by the Mumford-Tate conjecture.

Summary

We haven't generated a summary for this paper yet.