Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-layer Kernel Ridge Regression for One-class Classification (1805.07808v2)

Published 20 May 2018 in cs.LG and stat.ML

Abstract: In this paper, a multi-layer architecture (in a hierarchical fashion) by stacking various Kernel Ridge Regression (KRR) based Auto-Encoder for one-class classification is proposed and is referred as MKOC. MKOC has many layers of Auto-Encoders to project the input features into new feature space and the last layer was regression based one class classifier. The Auto-Encoders use an unsupervised approach of learning and the final layer uses semi-supervised (trained by only positive samples) approach of learning. The proposed MKOC is experimentally evaluated on 15 publicly available benchmark datasets. Experimental results verify the effectiveness of the proposed approach over 11 existing state-of-the-art kernel-based one-class classifiers. Friedman test is also performed to verify the statistical significance of the claim of the superiority of the proposed one-class classifiers over the existing state-of-the-art methods.

Citations (3)

Summary

We haven't generated a summary for this paper yet.