Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Overcoming catastrophic forgetting problem by weight consolidation and long-term memory (1805.07441v1)

Published 18 May 2018 in cs.LG and stat.ML

Abstract: Sequential learning of multiple tasks in artificial neural networks using gradient descent leads to catastrophic forgetting, whereby previously learned knowledge is erased during learning of new, disjoint knowledge. Here, we propose a new approach to sequential learning which leverages the recent discovery of adversarial examples. We use adversarial subspaces from previous tasks to enable learning of new tasks with less interference. We apply our method to sequentially learning to classify digits 0, 1, 2 (task 1), 4, 5, 6, (task 2), and 7, 8, 9 (task 3) in MNIST (disjoint MNIST task). We compare and combine our Adversarial Direction (AD) method with the recently proposed Elastic Weight Consolidation (EWC) method for sequential learning. We train each task for 20 epochs, which yields good initial performance (99.24% correct task 1 performance). After training task 2, and then task 3, both plain gradient descent (PGD) and EWC largely forget task 1 (task 1 accuracy 32.95% for PGD and 41.02% for EWC), while our combined approach (AD+EWC) still achieves 94.53% correct on task 1. We obtain similar results with a much more difficult disjoint CIFAR10 task, which to our knowledge had not been attempted before (70.10% initial task 1 performance, 67.73% after learning tasks 2 and 3 for AD+EWC, while PGD and EWC both fall to chance level). Our results suggest that AD+EWC can provide better sequential learning performance than either PGD or EWC.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Shixian Wen (8 papers)
  2. Laurent Itti (57 papers)
Citations (15)

Summary

We haven't generated a summary for this paper yet.