Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multidimensional bilinear Hardy inequalities (1805.07235v1)

Published 17 May 2018 in math.FA

Abstract: Our goal in this paper is to find a characterization of $n$-dimensional bilinear Hardy inequalities \begin{align*} \bigg| \,\int_{B(0,\cdot)} f \cdot \int_{B(0,\cdot)} g \,\bigg|{q,u,(0,\infty)} & \leq C \, |f|{p_1,v_1,{\mathbb R}n} \, |g|{p_2,v_2,{\mathbb R}n}, \quad f,\,g \in {\mathfrak M}+ ({\mathbb R}n), \end{align*} and \begin{align*} \bigg| \,\int{\,{{\mathsf{c}}}! B(0,\cdot)} f \cdot \int_{\,{{\mathsf{c}}}! B(0,\cdot)} g \,\bigg|{q,u,(0,\infty)} &\leq C \, |f|{p_1,v_1,{\mathbb R}n} \, |g|{p_2,v_2,{\mathbb R}n}, \quad f,\,g \in {\mathfrak M}+ ({\mathbb R}n), \end{align*} when $0 < q \le \infty$, $1 \le p_1,\,p_2 \le \infty$ and $u$ and $v_1,\,v_2$ are weight functions on $(0,\infty)$ and ${\mathbb R}n$, respectively. Since the solution of the first inequality can be obtained from the characterization of the second one by usual change of variables we concentrate our attention on characterization of the latter. The characterization of this inequality is easily obtained for the range of parameters when $p_1 \le q$ using the characterizations of multidimensional weighted Hardy-type inequalites while in the case when $q < p_1$ the problem is reduced to the solution of multidimensional weighted iterated Hardy-type inequality. To achieve the goal, we characterize the validity of multidimensional weighted iterated Hardy-type inequality $$ \left|\left|\int{\,{{\mathsf{c}}}! B(0,\cdot)}h(z)dz\right|{p,u,(0,t)}\right|{q,\mu,(0,\infty)}\leq c |h|_{\theta,v,(0,\infty)},~ h \in \mathfrak{M}+({\mathbb R}n) $$ where $0 < p,\,q < +\infty$, $1 \leq \theta \le \infty$, $u\in {\mathcal W}(0,\infty)$, $v \in {\mathcal W}({\mathbb R}n)$ and $\mu$ is a non-negative Borel measure on $(0,\infty)$.

Summary

We haven't generated a summary for this paper yet.