Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extraction and Analysis of Dynamic Conversational Networks from TV Series (1805.06782v1)

Published 16 May 2018 in cs.MM

Abstract: Identifying and characterizing the dynamics of modern tv series subplots is an open problem. One way is to study the underlying social network of interactions between the characters. Standard dynamic network extraction methods rely on temporal integration, either over the whole considered period, or as a sequence of several time-slices. However, they turn out to be inappropriate in the case of tv series, because the scenes shown onscreen alternatively focus on parallel storylines, and do not necessarily respect a traditional chronology. In this article, we introduce Narrative Smoothing, a novel network extraction method taking advantage of the plot properties to solve some of their limitations. We apply our method to a corpus of 3 popular series, and compare it to both standard approaches. Narrative smoothing leads to more relevant observations when it comes to the characterization of the protagonists and their relationships, confirming its appropriateness to model the intertwined storylines constituting the plots.

Citations (10)

Summary

We haven't generated a summary for this paper yet.