Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nonparametric Bayesian volatility learning under microstructure noise (1805.05606v2)

Published 15 May 2018 in stat.ME, q-fin.ST, and stat.ML

Abstract: In this work, we study the problem of learning the volatility under market microstructure noise. Specifically, we consider noisy discrete time observations from a stochastic differential equation and develop a novel computational method to learn the diffusion coefficient of the equation. We take a nonparametric Bayesian approach, where we \emph{a priori} model the volatility function as piecewise constant. Its prior is specified via the inverse Gamma Markov chain. Sampling from the posterior is accomplished by incorporating the Forward Filtering Backward Simulation algorithm in the Gibbs sampler. Good performance of the method is demonstrated on two representative synthetic data examples. We also apply the method on a EUR/USD exchange rate dataset. Finally we present a limit result on the prior distribution.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. SIAM Rev. 59(1), 65–98 (2017)
  2. Springer (2006)
  3. In: M.E. Davies, C.J. James, S.A. Abdallah, M.D. Plumbley (eds.) Independent Component Analysis and Signal Separation: 7th International Conference, ICA 2007, London, UK, September 9–12, 2007. Proceedings, pp. 697–705. Springer Berlin Heidelberg, Berlin, Heidelberg (2007)
  4. Econometrica 53(2), 385–407 (1985)
  5. J. Roy. Statist. Soc. Ser. B 57(2), 371–394 (1995)
  6. Filipovic, D.: Term-Structure Models. A Graduate Course. Springer (2009)
  7. Cambridge University Press, Cambridge (2017)
  8. Springer (2004)
  9. Brazilian Journal of Probability and Statistics 34(3), 537 – 579 (2020). DOI 10.1214/19-BJPS433. URL https://doi.org/10.1214/19-BJPS433
  10. DOI 10.5281/zenodo.6801410. URL https://doi.org/10.5281/zenodo.6801410
  11. RESEARCHERS.ONE (2019). URL https://www.researchers.one/article/2019-06-6
  12. In: J. de Gier, C.E. Praeger, T. Tao (eds.) 2017 MATRIX Annals, pp. 279–302. Springer International Publishing, Cham (2019)
  13. Heston, S.L.: A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financial Stud. 6(2), 327–343 (1993)
  14. Ann. Inst. Henri Poincaré Probab. Stat. 48(4), 1186–1216 (2012)
  15. Comput. Statist. Data Anal. 56(6), 1333–1349 (2012)
  16. Stochastic Process. Appl. 119(7), 2249–2276 (2009)
  17. Springer Science & Business Media (2013)
  18. Econometric Theory 32(4), 861–916 (2016)
  19. Springer-Verlag, Berlin (1992). DOI 10.1007/978-3-662-12616-5. URL https://doi.org/10.1007/978-3-662-12616-5
  20. Finance and Stochastics 19(2), 261–293 (2015)
  21. Electron. J. Stat. 11(1), 2358–2396 (2017)
  22. Bayesian Anal. 8(2), 269–302 (2013)
  23. Springer Series in Statistics. Springer, Cham (2015)
  24. In: Borrowing strength: theory powering applications—a Festschrift for Lawrence D. Brown, Inst. Math. Stat. (IMS) Collect., vol. 6, pp. 43–55. Inst. Math. Statist., Beachwood, OH (2010)
  25. Springer-Verlag, Berlin (2005)
  26. Econometrica 77(5), 1403–1445 (2009)
  27. In: Statistical methods for stochastic differential equations, Monogr. Statist. Appl. Probab., vol. 124, pp. 109–190. CRC Press, Boca Raton, FL (2012)
  28. J. Comput. Graph. Statist. 22(3), 665–688 (2013)
  29. Use R! Springer, New York (2009)
  30. van der Ploeg, A.P.C.: Stochastic volatility and the pricing of financial derivatives. Ph.D. thesis, University of Amsterdam (2006)
  31. Reiß, M.: Asymptotic equivalence for inference on the volatility from noisy observations. Ann. Statist. 39(2), 772–802 (2011)
  32. In: Modeling and stochastic learning for forecasting in high dimensions, Lect. Notes Stat., vol. 217, pp. 213–241. Springer, Cham (2015)
  33. Silverman, B.W.: Density estimation for statistics and data analysis. Monographs on Statistics and Applied Probability. Chapman & Hall, London (1986)
  34. J. Amer. Statist. Assoc. 82(398), 528–550 (1987). With discussion and with a reply by the authors
  35. Tierney, L.: Markov chains for exploring posterior distributions. Ann. Statist. 22(4), 1701–1762 (1994). With discussion and a rejoinder by the author
  36. Wilkinson, D.J.: Metropolis Hastings MCMC when the proposal and target have differing support (2012). URL https://darrenjw.wordpress.com/2012/06/04/metropolis-hastings-mcmc-when-the-proposal-and-target-have-differing-support/. Online; accessed on 23 December 2017
  37. Journal of the American Statistical Association 100(472), 1394–1411 (2005)
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com