Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Remarks on a system of quasi-linear wave equations in $3$D satisfying the weak null condition (1805.04996v3)

Published 14 May 2018 in math.AP

Abstract: We give an alternative proof of the global existence result originally due to Hidano and Yokoyama for the Cauchy problem for a system of quasi-linear wave equations in three space dimensions satisfying the weak null condition. The feature of the new proof lies in that it never uses the Lorentz boost operator in the energy integral argument. The proof presented here has an advantage over the former one in that the assumption of compactness of the support of data can be eliminated and the amount of regularity of data can be lowered in a straightforward manner. A recent result of Zha for the scalar unknowns is also refined.

Summary

We haven't generated a summary for this paper yet.