Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
138 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
4 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Bayesian Dynamic Modeling and Monitoring of Network Flows (1805.04667v2)

Published 12 May 2018 in stat.ME

Abstract: In the context of a motivating study of dynamic network flow data on a large-scale e-commerce web site, we develop Bayesian models for on-line/sequential analysis for monitoring and adapting to changes reflected in node-node traffic. For large-scale networks, we customize core Bayesian time series analysis methods using dynamic generalized linear models (DGLMs). These are integrated into the context of multivariate networks using the concept of decouple/recouple that was recently introduced in multivariate time series. This method enables flexible dynamic modeling of flows on large-scale networks and exploitation of partial parallelization of analysis while maintaining coherence with an over-arching multivariate dynamic flow model. This approach is anchored in a case-study on internet data, with flows of visitors to a commercial news web site defining a long time series of node-node counts on over 56,000 node pairs. Central questions include characterizing inherent stochasticity in traffic patterns, understanding node-node interactions, adapting to dynamic changes in flows and allowing for sensitive monitoring to flag anomalies. The methodology of dynamic network DGLMs applies to many dynamic network flow studies.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.