Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extracting structured dynamical systems using sparse optimization with very few samples (1805.04158v1)

Published 10 May 2018 in cs.IT, cs.NA, and math.IT

Abstract: Learning governing equations allows for deeper understanding of the structure and dynamics of data. We present a random sampling method for learning structured dynamical systems from under-sampled and possibly noisy state-space measurements. The learning problem takes the form of a sparse least-squares fitting over a large set of candidate functions. Based on a Bernstein-like inequality for partly dependent random variables, we provide theoretical guarantees on the recovery rate of the sparse coefficients and the identification of the candidate functions for the corresponding problem. Computational results are demonstrated on datasets generated by the Lorenz 96 equation, the viscous Burgers' equation, and the two-component reaction-diffusion equations (which is challenging due to parameter sensitives in the model). This formulation has several advantages including ease of use, theoretical guarantees of success, and computational efficiency with respect to ambient dimension and number of candidate functions.

Citations (51)

Summary

We haven't generated a summary for this paper yet.