Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An efficient two step algorithm for high dimensional change point regression models without grid search (1805.03719v5)

Published 9 May 2018 in stat.ME

Abstract: We propose a two step algorithm based on $\ell_1/\ell_0$ regularization for the detection and estimation of parameters of a high dimensional change point regression model and provide the corresponding rates of convergence for the change point as well as the regression parameter estimates. Importantly, the computational cost of our estimator is only $2\cdotp$Lasso$(n,p)$, where Lasso$(n,p)$ represents the computational burden of one Lasso optimization in a model of size $(n,p)$. In comparison, existing grid search based approaches to this problem require a computational cost of at least $n\cdot {\rm Lasso}(n,p)$ optimizations. Additionally, the proposed method is shown to be able to consistently detect the case of `no change', i.e., where no finite change point exists in the model. We work under a subgaussian random design where the underlying assumptions in our study are milder than those currently assumed in the high dimensional change point regression literature. We allow the true change point parameter $\tau_0$ to possibly move to the boundaries of its parametric space, and the jump size $|\beta_0-\gamma_0|_2$ to possibly diverge as $n$ increases. We then characterize the corresponding effects on the rates of convergence of the change point and regression estimates. In particular, we show that, while an increasing jump size may have a beneficial effect on the change point estimate, however the optimal rate of regression parameter estimates are preserved only upto a certain rate of the increasing jump size. This behavior in the rate of regression parameter estimates is unique to high dimensional change point regression models only. Simulations are performed to empirically evaluate performance of the proposed estimators. The methodology is applied to community level socio-economic data of the U.S., collected from the 1990 U.S. census and other sources.

Citations (5)

Summary

We haven't generated a summary for this paper yet.