Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Von Neumann's inequality for commuting operator-valued multishifts (1805.03547v2)

Published 9 May 2018 in math.FA

Abstract: Recently, Hartz proved that every commuting contractive classical multishift with non-zero weights satisfies the matrix-version of von Neumann's inequality. We show that this result does not extend to the class of commuting operator-valued multishifts with invertible operator weights. In particular, we show that if $A$ and $B$ are commuting contractive $d$-tuples of operators such that $B$ satisfies the matrix-version of von Neumann's inequality and $(1, \ldots, 1)$ is in the algebraic spectrum of $B$, then the tensor product $A \otimes B$ satisfies the von Neumann's inequality if and only if $A$ satisfies the von Neumann's inequality. We also exhibit several families of operator-valued multishifts for which the von Neumann's inequality always holds.

Summary

We haven't generated a summary for this paper yet.