Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Parallel Graph Connectivity in Log Diameter Rounds (1805.03055v1)

Published 8 May 2018 in cs.DS and cs.DC

Abstract: We study graph connectivity problem in MPC model. On an undirected graph with $n$ nodes and $m$ edges, $O(\log n)$ round connectivity algorithms have been known for over 35 years. However, no algorithms with better complexity bounds were known. In this work, we give fully scalable, faster algorithms for the connectivity problem, by parameterizing the time complexity as a function of the diameter of the graph. Our main result is a $O(\log D \log\log_{m/n} n)$ time connectivity algorithm for diameter-$D$ graphs, using $\Theta(m)$ total memory. If our algorithm can use more memory, it can terminate in fewer rounds, and there is no lower bound on the memory per processor. We extend our results to related graph problems such as spanning forest, finding a DFS sequence, exact/approximate minimum spanning forest, and bottleneck spanning forest. We also show that achieving similar bounds for reachability in directed graphs would imply faster boolean matrix multiplication algorithms. We introduce several new algorithmic ideas. We describe a general technique called double exponential speed problem size reduction which roughly means that if we can use total memory $N$ to reduce a problem from size $n$ to $n/k$, for $k=(N/n){\Theta(1)}$ in one phase, then we can solve the problem in $O(\log\log_{N/n} n)$ phases. In order to achieve this fast reduction for graph connectivity, we use a multistep algorithm. One key step is a carefully constructed truncated broadcasting scheme where each node broadcasts neighbor sets to its neighbors in a way that limits the size of the resulting neighbor sets. Another key step is random leader contraction, where we choose a smaller set of leaders than many previous works do.

Citations (97)

Summary

We haven't generated a summary for this paper yet.