Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Attention-based Hierarchical Neural Query Suggestion (1805.02816v1)

Published 8 May 2018 in cs.IR

Abstract: Query suggestions help users of a search engine to refine their queries. Previous work on query suggestion has mainly focused on incorporating directly observable features such as query co-occurrence and semantic similarity. The structure of such features is often set manually, as a result of which hidden dependencies between queries and users may be ignored. We propose an AHNQS model that combines a hierarchical structure with a session-level neural network and a user-level neural network to model the short- and long-term search history of a user. An attention mechanism is used to capture user preferences. We quantify the improvements of AHNQS over state-of-the-art RNN-based query suggestion baselines on the AOL query log dataset, with improvements of up to 21.86% and 22.99% in terms of MRR@10 and Recall@10, respectively, over the state-of-the-art; improvements are especially large for short sessions.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Wanyu Chen (11 papers)
  2. Fei Cai (9 papers)
  3. Honghui Chen (10 papers)
  4. Maarten de Rijke (263 papers)
Citations (43)

Summary

We haven't generated a summary for this paper yet.