Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generalized Random Gilbert-Varshamov Codes (1805.02515v2)

Published 7 May 2018 in cs.IT and math.IT

Abstract: We introduce a random coding technique for transmission over discrete memoryless channels, reminiscent of the basic construction attaining the Gilbert-Varshamov bound for codes in Hamming spaces. The code construction is based on drawing codewords recursively from a fixed type class, in such a way that a newly generated codeword must be at a certain minimum distance from all previously chosen codewords, according to some generic distance function. We derive an achievable error exponent for this construction, and prove its tightness with respect to the ensemble average. We show that the exponent recovers the Csisz\'{a}r and K{\"o}rner exponent as a special case, which is known to be at least as high as both the random-coding and expurgated exponents, and we establish the optimality of certain choices of the distance function. In addition, for additive distances and decoding metrics, we present an equivalent dual expression, along with a generalization to infinite alphabets via cost-constrained random coding.

Citations (16)

Summary

We haven't generated a summary for this paper yet.