Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient active learning of sparse halfspaces (1805.02350v2)

Published 7 May 2018 in cs.LG and stat.ML

Abstract: We study the problem of efficient PAC active learning of homogeneous linear classifiers (halfspaces) in $\mathbb{R}d$, where the goal is to learn a halfspace with low error using as few label queries as possible. Under the extra assumption that there is a $t$-sparse halfspace that performs well on the data ($t \ll d$), we would like our active learning algorithm to be {\em attribute efficient}, i.e. to have label requirements sublinear in $d$. In this paper, we provide a computationally efficient algorithm that achieves this goal. Under certain distributional assumptions on the data, our algorithm achieves a label complexity of $O(t \cdot \mathrm{polylog}(d, \frac 1 \epsilon))$. In contrast, existing algorithms in this setting are either computationally inefficient, or subject to label requirements polynomial in $d$ or $\frac 1 \epsilon$.

Citations (36)

Summary

We haven't generated a summary for this paper yet.