Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Supercuspidal unipotent representations: L-packets and formal degrees (1805.01888v3)

Published 2 May 2018 in math.RT

Abstract: Let K be a non-archimedean local field and let G be a connected reductive K-group which splits over an unramified extension of K. We investigate supercuspidal unipotent representations of the group G(K). We establish a bijection between the set of irreducible G(K)-representations of this kind and the set of cuspidal enhanced L-parameters for G(K), which are trivial on the inertia subgroup of the Weil group of K. The bijection is characterized by a few simple equivariance properties and a comparison of formal degrees of representations with adjoint $\gamma$-factors of L-parameters. This can be regarded as a local Langlands correspondence for all supercuspidal unipotent representations. We count the ensueing L-packets, in terms of data from the affine Dynkin diagram of G. Finally, we prove that our bijection satisfies the conjecture of Hiraga, Ichino and Ikeda about the formal degrees of the representations.

Summary

We haven't generated a summary for this paper yet.