Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bilinear fractional integral operators on Morrey spaces (1805.01846v3)

Published 4 May 2018 in math.CA

Abstract: We prove a plethora of boundedness property of the Adams type for bilinear fractional integral operators of the form $$B_{\alpha}(f,g)(x)=\int_{\mathbb{R}{n}}\frac{f(x-y)g(x+y)}{|y|{n-\alpha}}dy,\qquad 0<\alpha<n.$$ For $1<t\leq s<\infty$, we prove the non-weighted case through the known Adams type result. And we show that these results of Adams type is optimal. For $0<t\leq s<\infty$ and $0<t\leq1$, we obtain new result of a weighted theory describing Morrey boundedness of above form operators if two weights $(v,\vec{w})$ satisfy $$ [v,\vec{w}]{t,\vec{q}/{a}}{r,as}=\mathop{\sup{Q,Q{\prime}\in\mathscr{D}}}_{Q\subset Q{\prime}}\left(\frac{|Q|}{|Q{\prime}|}\right){\frac{1-s}{as}}|Q{\prime}|{\frac{1}{r}}\left(\fint_{Q}v{\frac{t}{1-t}}\right){\frac{1-t}{t}}\prod_{i=1}{2}\left(\fint_{Q{\prime}}w_{i}{-(q_{i}/a){\prime}}\right){\frac{1}{(q_{i}/a){\prime}}}<\infty,\,\,\, 0<t<s<1 $$ and $$ [v,\vec{w}]{t,\vec{q}/{a}}{r,as}:=\mathop{\sup{Q,Q{\prime}\in\mathscr{D}}}_{Q\subset Q{\prime}}\left(\frac{|Q|}{|Q{\prime}|}\right){\frac{1-as}{as}}|Q{\prime}|{\frac{1}{r}}\left(\fint_{Q}v{\frac{t}{1-t}}\right){\frac{1-t}{t}}\prod_{i=1}{2}\left(\fint_{Q{\prime}}w_{i}{-(q_{i}/a){\prime}}\right){\frac{1}{(q_{i}/a){\prime}}}<\infty, \,\,\,s\geq1 $$ where $|v|{L{\infty}(Q)}=\sup{Q}v$ when $t=1$, $a$, $r$, $s$, $t$ and $\vec{q}$ satisfy proper conditions. As some applications we formulate a bilinear version of the Olsen inequality, the Fefferman-Stein type dual inequality and the Stein-Weiss inequality on Morrey spaces for fractional integrals.

Summary

We haven't generated a summary for this paper yet.