Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Causal Queries from Observational Data in Biological Systems via Bayesian Networks: An Empirical Study in Small Networks (1805.01608v1)

Published 4 May 2018 in q-bio.QM, q-bio.MN, stat.AP, and stat.ML

Abstract: Biological networks are a very convenient modelling and visualisation tool to discover knowledge from modern high-throughput genomics and postgenomics data sets. Indeed, biological entities are not isolated, but are components of complex multi-level systems. We go one step further and advocate for the consideration of causal representations of the interactions in living systems.We present the causal formalism and bring it out in the context of biological networks, when the data is observational. We also discuss its ability to decipher the causal information flow as observed in gene expression. We also illustrate our exploration by experiments on small simulated networks as well as on a real biological data set.

Citations (5)

Summary

We haven't generated a summary for this paper yet.