Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stochastic local operations and classical communication (SLOCC) and local unitary operations (LU) classifications of n qubits via ranks and singular values of the spin-flipping matrices (1805.01339v1)

Published 3 May 2018 in quant-ph

Abstract: We construct $\ell $-spin-flipping matrices from the coefficient matrices of pure states of $n$ qubits and show that the $\ell $-spin-flipping matrices are congruent and unitary congruent whenever two pure states of $n$ qubits are SLOCC and LU equivalent, respectively. The congruence implies the invariance of ranks of the $\ell $-spin-flipping matrices under SLOCC and then permits a reduction of SLOCC classification of n qubits to calculation of ranks of the $\ell $-spin-flipping matrices. The unitary congruence implies the invariance of singular values of the $\ell $-spin-flipping matrices under LU and then permits a reduction of LU classification of n qubits to calculation of singular values of the $\ell $-spin-flipping matrices. Furthermore, we show that the invariance of singular values of the $\ell $-spin-flipping matrices $\Omega _{1}{(n)}$ implies the invariance of the concurrence for even $n$ qubits and the invariance of the n-tangle for odd $n$ qubits. Thus, the concurrence and the n-tangle can be used for LU classification and computing the concurrence and the n-tangle only performs additions and multiplications of coefficients of states.

Summary

We haven't generated a summary for this paper yet.