Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-task Learning of Cascaded CNN for Facial Attribute Classification (1805.01290v1)

Published 3 May 2018 in cs.CV

Abstract: Recently, facial attribute classification (FAC) has attracted significant attention in the computer vision community. Great progress has been made along with the availability of challenging FAC datasets. However, conventional FAC methods usually firstly pre-process the input images (i.e., perform face detection and alignment) and then predict facial attributes. These methods ignore the inherent dependencies among these tasks (i.e., face detection, facial landmark localization and FAC). Moreover, some methods using convolutional neural network are trained based on the fixed loss weights without considering the differences between facial attributes. In order to address the above problems, we propose a novel multi-task learning of cas- caded convolutional neural network method, termed MCFA, for predicting multiple facial attributes simultaneously. Specifically, the proposed method takes advantage of three cascaded sub-networks (i.e., S_Net, M_Net and L_Net corresponding to the neural networks under different scales) to jointly train multiple tasks in a coarse-to-fine manner, which can achieve end-to-end optimization. Furthermore, the proposed method automatically assigns the loss weight to each facial attribute based on a novel dynamic weighting scheme, thus making the proposed method concentrate on predicting the more difficult facial attributes. Experimental results show that the proposed method outperforms several state-of-the-art FAC methods on the challenging CelebA and LFWA datasets.

Citations (32)

Summary

We haven't generated a summary for this paper yet.