Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Placement Delivery Array Design via Attention-Based Deep Neural Network (1805.00599v1)

Published 2 May 2018 in cs.IT and math.IT

Abstract: A decentralized coded caching scheme has been proposed by Maddah-Ali and Niesen, and has been shown to alleviate the load of networks. Recently, placement delivery array (PDA) was proposed to characterize the coded caching scheme. In this paper, a neural architecture is first proposed to learn the construction of PDAs. Our model solves the problem of variable size PDAs using mechanism of neural attention and reinforcement learning. It differs from the previous attempts in that, instead of using combined optimization algorithms to get PDAs, it uses sequence-to-sequence model to learn construct PDAs. Numerical results are given to demonstrate that the proposed method can effectively implement coded caching. We also show that the complexity of our method to construct PDAs is low.

Citations (1)

Summary

We haven't generated a summary for this paper yet.