Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Investigation on Support Vector Clustering for Big Data in Quantum Paradigm (1804.10905v2)

Published 29 Apr 2018 in cs.LG and stat.ML

Abstract: The support vector clustering algorithm is a well-known clustering algorithm based on support vector machines using Gaussian or polynomial kernels. The classical support vector clustering algorithm works well in general, but its performance degrades when applied on big data. In this paper, we have investigated the performance of support vector clustering algorithm implemented in a quantum paradigm for possible run-time improvements. We have developed and analyzed a quantum version of the support vector clustering algorithm. The proposed approach is based on the quantum support vector machine and quantum kernels (i.e., Gaussian and polynomial). The proposed quantum version of the SVM clustering method demonstrates a significant speed-up gain on the overall run-time complexity as compared to the classical counterpart.

Citations (3)

Summary

We haven't generated a summary for this paper yet.