Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast 3D Point Cloud Denoising via Bipartite Graph Approximation & Total Variation (1804.10831v1)

Published 28 Apr 2018 in eess.SP

Abstract: Acquired 3D point cloud data, whether from active sensors directly or from stereo-matching algorithms indirectly, typically contain non-negligible noise. To address the point cloud denoising problem, we propose a fast graph-based local algorithm. Specifically, given a k-nearest-neighbor graph of the 3D points, we first approximate it with a bipartite graph(independent sets of red and blue nodes) using a KL divergence criterion. For each partite of nodes (say red), we first define surface normal of each red node using 3D coordinates of neighboring blue nodes, so that red node normals n can be written as a linear function of red node coordinates p. We then formulate a convex optimization problem, with a quadratic fidelity term ||p-q||_22 given noisy observed red coordinates q and a graph total variation (GTV) regularization term for surface normals of neighboring red nodes. We minimize the resulting l2-l1-norm using alternating direction method of multipliers (ADMM) and proximal gradient descent. The two partites of nodes are alternately optimized until convergence. Experimental results show that compared to state-of-the-art schemes with similar complexity, our proposed algorithm achieves the best overall denoising performance objectively and subjectively.

Summary

We haven't generated a summary for this paper yet.