Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Endpoint Alexandrov Bakelman Pucci Estimate in the Plane (1804.09318v3)

Published 25 Apr 2018 in math.AP

Abstract: The classical Alexandrov-Bakelman-Pucci estimate for the Laplacian states $$ \max_{x \in \Omega}{ |u(x)|} \leq \max_{x \in \partial \Omega}{|u(x)|} + c_{s,n} \mbox{diam}(\Omega){2-\frac{n}{s}} \left| \Delta u\right|{Ls(\Omega)}$$ where $\Omega \subset \mathbb{R}n$, $u \in C2(\Omega) \cap C(\overline{\Omega})$ and $s > n/2$. The inequality fails for $s = n/2$. A Sobolev embedding result of Milman & Pustylink, originally phrased in a slightly different context, implies an endpoint inequality: if $n \geq 3$ and $\Omega \subset \mathbb{R}n$ is bounded, then $$ \max{x \in \Omega}{ |u(x)|} \leq \max_{x \in \partial \Omega}{|u(x)|} + c_n \left| \Delta u\right|{L{\frac{n}{2},1}(\Omega)},$$ where $L{p,q}$ is the Lorentz space refinement of $Lp$. This inequality fails for $n=2$ and we prove a sharp substitute result: there exists $c>0$ such that for all $\Omega \subset \mathbb{R}2$ with finite measure $$ \max{x \in \Omega}{ |u(x)|} \leq \max_{x \in \partial \Omega}{|u(x)|} + c \max_{x \in \Omega} \int_{y \in \Omega}{ \max\left{ 1, \log{\left(\frac{|\Omega|}{|x-y|2} \right)} \right} \left| \Delta u(y)\right| dy}.$$ This is somewhat dual to the classical Trudinger-Moser inequality; we also note that it is sharper than the usual estimates given in Orlicz spaces, the proof is rearrangement-free. The Laplacian can be replaced by any uniformly elliptic operator in divergence form.

Summary

We haven't generated a summary for this paper yet.