Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Structured SUMCOR Multiview Canonical Correlation Analysis for Large-Scale Data (1804.08806v1)

Published 24 Apr 2018 in cs.LG, cs.IR, eess.SP, and stat.ML

Abstract: The sum-of-correlations (SUMCOR) formulation of generalized canonical correlation analysis (GCCA) seeks highly correlated low-dimensional representations of different views via maximizing pairwise latent similarity of the views. SUMCOR is considered arguably the most natural extension of classical two-view CCA to the multiview case, and thus has numerous applications in signal processing and data analytics. Recent work has proposed effective algorithms for handling the SUMCOR problem at very large scale. However, the existing scalable algorithms cannot incorporate structural regularization and prior information -- which are critical for good performance in real-world applications. In this work, we propose a new computational framework for large-scale SUMCOR GCCA that can easily incorporate a suite of structural regularizers which are frequently used in data analytics. The updates of the proposed algorithm are lightweight and the memory complexity is also low. In addition, the proposed algorithm can be readily implemented in a parallel fashion. We show that the proposed algorithm converges to a Karush-Kuhn-Tucker (KKT) point of the regularized SUMCOR problem. Judiciously designed simulations and real-data experiments are employed to demonstrate the effectiveness of the proposed algorithm.

Citations (33)

Summary

We haven't generated a summary for this paper yet.