Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Central Limit Model Checking (1804.08744v1)

Published 23 Apr 2018 in cs.LO and q-bio.QM

Abstract: We consider probabilistic model checking for continuous-time Markov chains (CTMCs) induced from Stochastic Reaction Networks (SRNs) against a fragment of Continuous Stochastic Logic (CSL) extended with reward operators. Classical numerical algorithms for CSL model checking based on uniformisation are limited to finite CTMCs and suffer from the state sapce explosion problem. On the other hand, approximate techniques such as mean-field approximations and simulations combined with statistical inference are more scalable, but can be time consuming and do not support the full expressiveness of CSL. In this paper we employ a continuous-space approximation of the CTMC in terms of a Gaussian process based on the Central Limit Approximation (CLA), also known as the Linear Noise Approximation (LNA), whose solution requires solving a number of differential equations that is quadratic in the number of species and independent of the population size. We then develop efficient and scalable approximate model checking algorithms on the resulting Gaussian process, where we restrict the target regions for probabilistic reachability to convex polytopes. This allows us to derive an abstraction in terms of a time-inhomogeneous discrete-time Markov chain (DTMC), whose dimension is independent of the number of species, on which model checking is performed. Using results from probability theory, we prove the convergence in distribution of our algorithms to the corresponding measures on the original CTMC. We implement the techniques and, on a set of examples, demonstrate that they allow us to overcome the state space explosion problem, while still correctly characterizing the stochastic behaviour of the system. Our methods can be used for formal analysis of a wide range of distributed stochastic systems, including biochemical systems, sensor networks and population protocols.

Citations (10)

Summary

We haven't generated a summary for this paper yet.