Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
o3 Pro
5 tokens/sec
GPT-4.1 Pro
15 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
Gemini 2.5 Flash Deprecated
12 tokens/sec
2000 character limit reached

Single-User mmWave Massive MIMO: SVD-based ADC Bit Allocation and Combiner Design (1804.08595v1)

Published 23 Apr 2018 in eess.SP, cs.IT, and math.IT

Abstract: In this paper, we propose a Singular-Value-Decomposition-based variable-resolution Analog to Digital Converter (ADC) bit allocation design for a single-user Millimeter wave massive Multiple-Input Multiple-Output receiver. We derive the optimality condition for bit allocation under a power constraint. This condition ensures optimal receiver performance in the Mean Squared Error (MSE) sense. We derive the MSE expression and show that it approaches the Cramer-Rao Lower Bound (CRLB). The CRLB is seen to be a function of the analog combiner, the digital combiner, and the bit allocation matrix. We attempt to minimize the CRLB with respect to the bit allocation matrix by making suitable assumptions regarding the structure of the combiners. In doing so, the bit allocation design reduces to a set of simple inequalities consisting of ADC bits, channel singular values and covariance of the quantization noise along each RF path. This results in a simple and computationally efficient bit allocation algorithm. Using simulations, we show that the MSE performance of our proposed bit allocation is very close to that of the Full Search (FS) bit allocation. We also show that the computational complexity of our proposed method has an order of magnitude improvement compared to FS and Genetic Algorithm based bit allocation of $\cite{Zakir1}$

Citations (10)

Summary

We haven't generated a summary for this paper yet.