Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semantic Text Analysis for Detection of Compromised Accounts on Social Networks (1804.07247v4)

Published 19 Apr 2018 in cs.SI, cs.CL, and cs.CR

Abstract: Compromised accounts on social networks are regular user accounts that have been taken over by an entity with malicious intent. Since the adversary exploits the already established trust of a compromised account, it is crucial to detect these accounts to limit the damage they can cause. We propose a novel general framework for semantic analysis of text messages coming out from an account to detect compromised accounts. Our framework is built on the observation that normal users will use language that is measurably different from the language that an adversary would use when the account is compromised. We propose to use the difference of LLMs of users and adversaries to define novel interpretable semantic features for measuring semantic incoherence in a message stream. We study the effectiveness of the proposed semantic features using a Twitter data set. Evaluation results show that the proposed framework is effective for discovering compromised accounts on social networks and a KL-divergence-based LLM feature works best.

Citations (16)

Summary

We haven't generated a summary for this paper yet.