Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian nonparametric analysis of Kingman's coalescent (1804.07065v1)

Published 19 Apr 2018 in stat.ME, math.PR, math.ST, and stat.TH

Abstract: Kingman's coalescent is one of the most popular models in population genetics. It describes the genealogy of a population whose genetic composition evolves in time according to the Wright-Fisher model, or suitable approximations of it belonging to the broad class of Fleming-Viot processes. Ancestral inference under Kingman's coalescent has had much attention in the literature, both in practical data analysis, and from a theoretical and methodological point of view. Given a sample of individuals taken from the population at time $t>0$, most contributions have aimed at making frequentist or Bayesian parametric inference on quantities related to the genealogy of the sample. In this paper we propose a Bayesian nonparametric predictive approach to ancestral inference. That is, under the prior assumption that the composition of the population evolves in time according to a neutral Fleming-Viot process, and given the information contained in an initial sample of $m$ individuals taken from the population at time $t>0$, we estimate quantities related to the genealogy of an additional unobservable sample of size $m{\prime}\geq1$. As a by-product of our analysis we introduce a class of Bayesian nonparametric estimators (predictors) which can be thought of as Good-Turing type estimators for ancestral inference. The proposed approach is illustrated through an application to genetic data.

Summary

We haven't generated a summary for this paper yet.