Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards the next generation of exergames: Flexible and personalised assessment-based identification of tennis swings (1804.06948v2)

Published 18 Apr 2018 in cs.HC and cs.CY

Abstract: Current exergaming sensors and inertial systems attached to sports equipment or the human body can provide quantitative information about the movement or impact e.g. with the ball. However, the scope of these technologies is not to qualitatively assess sports technique at a personalised level, similar to a coach during training or replay analysis. The aim of this paper is to demonstrate a novel approach to automate identification of tennis swings executed with erroneous technique without recorded ball impact. The presented spatiotemporal transformations relying on motion gradient vector flow and polynomial regression with RBF classifier, can identify previously unseen erroneous swings (84.5-94.6%). The presented solution is able to learn from a small dataset and capture two subjective swing-technique assessment criteria from a coach. Personalised and flexible assessment criteria required for players of diverse skill levels and various coaching scenarios were demonstrated by assigning different labelling criteria for identifying similar spatiotemporal patterns of tennis swings.

Citations (12)

Summary

We haven't generated a summary for this paper yet.