Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hecke Relations in Rational Conformal Field Theory (1804.06860v3)

Published 18 Apr 2018 in hep-th, cond-mat.str-el, math.NT, and math.RT

Abstract: We define Hecke operators on vector-valued modular forms of the type that appear as characters of rational conformal field theories (RCFTs). These operators extend the previously studied Galois symmetry of the modular representation and fusion algebra of RCFTs to a relation between RCFT characters. We apply our results to derive a number of relations between characters of known RCFTs with different central charges and also explore the relation between Hecke operators and RCFT characters as solutions to modular linear differential equations. We show that Hecke operators can be used to construct an infinite set of possible characters for RCFTs with two independent characters and increasing central charge. These characters have multiplicity one for the vacuum representation, positive integer coefficients in their $q$ expansions, and are associated to a two-dimensional representation of the modular group which leads to non-negative integer fusion coefficients as determined by the Verlinde formula.

Summary

We haven't generated a summary for this paper yet.