Papers
Topics
Authors
Recent
Search
2000 character limit reached

Two-dimensional Brownian random interlacements

Published 16 Apr 2018 in math.PR | (1804.05967v2)

Abstract: We introduce the model of two-dimensional continuous random interlacements, which is constructed using the Brownian trajectories conditioned on not hitting a fixed set (usually, a disk). This model yields the local picture of Wiener sausage on the torus around a late point. As such, it can be seen as a continuous analogue of discrete two-dimensional random interlacements [Comets, Popov, Vachkovskaia, 2016]. At the same time, one can view it as (restricted) Brownian loops through infinity. We establish a number of results analogous to these of [Comets, Popov, Vachkovskaia, 2016; Comets, Popov, 2016], as well as the results specific to the continuous case.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.