Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 32 tok/s
GPT-5 High 40 tok/s Pro
GPT-4o 83 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

Machine Learning Analysis of Complex Networks in Hyperspherical Space (1804.05960v1)

Published 16 Apr 2018 in physics.soc-ph

Abstract: A complex network is a condensed representation of the relational topological framework of a complex system. A main reason for the existence of such networks is the transmission of items through the entities of these complex systems. Here, we consider a communicability function that accounts for the routes through which items flow on networks. Such a function induces a natural embedding of a network in a Euclidean high-dimensional sphere. We use one of the geometric parameters of this embedding, namely the angle between the position vectors of the nodes in the hyperspheres, to extract structural information from networks. Such information is extracted by using machine learning techniques, such as nonmetric multidimensional scaling and K-means clustering algorithms. The first allows us to reduce the dimensionality of the communicability hyperspheres to 3-dimensional ones that allow network visualization. The second permits to cluster the nodes of the networks based on their similarities in terms of their capacity to successfully deliver information through the network. After testing these approaches in benchmark networks and compare them with the most used clustering methods in networks we analyze two real-world examples. In the first, consisting of a citation network, we discover citation groups that reflect the level of mathematics used in their publications. In the second, we discover groups of genes that coparticipate in human diseases, reporting a few genes that coparticipate in cancer and other diseases. Both examples emphasize the potential of the current methodology for the discovery of new patterns in relational data.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.