Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Finite element error estimates for normal derivatives on boundary concentrated meshes (1804.05723v1)

Published 16 Apr 2018 in math.NA and math.OC

Abstract: This paper is concerned with approximations and related discretization error estimates for the normal derivatives of solutions of linear elliptic partial differential equations. In order to illustrate the ideas, we consider the Poisson equation with homogeneous Dirichlet boundary conditions and use standard linear finite elements for its discretization. The underlying domain is assumed to be polygonal but not necessarily convex. Approximations of the normal derivatives are introduced in a standard way as well as in a variational sense. On general quasi-uniform meshes, one can show that these approximate normal derivatives possess a convergence rate close to one in $L2$ as long as the singularities due to the corners are mild enough. Using boundary concentrated meshes, we show that the order of convergence can even be doubled in terms of the mesh parameter while increasing the complexity of the discrete problems only by a small factor. As an application, we use these results for the numerical analysis of Dirichlet boundary control problems, where the control variable corresponds to the normal derivative of some adjoint variable.

Summary

We haven't generated a summary for this paper yet.