Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An interpretable LSTM neural network for autoregressive exogenous model (1804.05251v1)

Published 14 Apr 2018 in cs.LG and stat.ML

Abstract: In this paper, we propose an interpretable LSTM recurrent neural network, i.e., multi-variable LSTM for time series with exogenous variables. Currently, widely used attention mechanism in recurrent neural networks mostly focuses on the temporal aspect of data and falls short of characterizing variable importance. To this end, our multi-variable LSTM equipped with tensorized hidden states is developed to learn variable specific representations, which give rise to both temporal and variable level attention. Preliminary experiments demonstrate comparable prediction performance of multi-variable LSTM w.r.t. encoder-decoder based baselines. More interestingly, variable importance in real datasets characterized by the variable attention is highly in line with that determined by statistical Granger causality test, which exhibits the prospect of multi-variable LSTM as a simple and uniform end-to-end framework for both forecasting and knowledge discovery.

Citations (35)

Summary

We haven't generated a summary for this paper yet.