Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast Parallel Randomized QR with Column Pivoting Algorithms for Reliable Low-rank Matrix Approximations (1804.05138v1)

Published 13 Apr 2018 in math.NA

Abstract: Factorizing large matrices by QR with column pivoting (QRCP) is substantially more expensive than QR without pivoting, owing to communication costs required for pivoting decisions. In contrast, randomized QRCP (RQRCP) algorithms have proven themselves empirically to be highly competitive with high-performance implementations of QR in processing time, on uniprocessor and shared memory machines, and as reliable as QRCP in pivot quality. We show that RQRCP algorithms can be as reliable as QRCP with failure probabilities exponentially decaying in oversampling size. We also analyze efficiency differences among different RQRCP algorithms. More importantly, we develop distributed memory implementations of RQRCP that are significantly better than QRCP implementations in ScaLAPACK. As a further development, we introduce the concept of and develop algorithms for computing spectrum-revealing QR factorizations for low-rank matrix approximations, and demonstrate their effectiveness against leading low-rank approximation methods in both theoretical and numerical reliability and efficiency.

Citations (21)

Summary

We haven't generated a summary for this paper yet.